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1. INTRODUCTION

The debate over the use of explicit versus implicit "nite di!erence schemes for the numerical
solution [1] of initial value problems is principally about the balance between the
con#icting predicaments of stability and computational e$ciency. Explicitly, only
conditionally stable, predictors do not require repeated, costly, and occasionally uncertain,
numerical solution of a non-linear equation for stepping out in time, but place severe
restrictions on the size of the time step as a precaution against explosive instabilities.

Yet di!erential equations that initially bifurcate into several branches sharing a common
incipient tangent are only partly solved by explicit methods that have no means of
discriminating between the di!erent emanating o!shoots of the non-unique solution. In
case the di!erential equation of motion can be factored, then each factor may be solved
separately, but if applied naively, the explicit scheme will follow only one branch of the
solution, that may even be of secondary interest, ignoring all others.

The implicit corrector, because it samples the solution away from the bifurcation, is apt to
place points on all branches that grow out of a singular starting point.

2. PRODUCT EQUATIONS

Consider the pair of initial value problems

xA#x#ax3"0 and x@"0, x(0)"1, x@(0)"0 (1)

in which x"x(t), and where ( )@ means di!erentiation with respect to time t. System (1)
includes two equations of motion that share the same initial conditions of position and
velocity. The product, non-linear, initial value problem

x@(xA#x#ax3)"0, x(0)"1, x@(0)"0 (2)

has two solutions bifurcating at t"0, one periodic and one of rest.
The "rst equation in system (1) describes the motion of a mass}spring system with

a non-linear conservative restoring force and we readily obtain for the combined equation
(2) the "rst integral

x@2#x2#1
2
ax4"1#1

2
a, x (0)"1, x@(0)"0 (3)
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expressing conservation of mechanical energy in the vibrating system. Equation (3) may be
rewritten as

x@"!J1!x2#1
2
a(1!x4) or x@"f (x). (4)

The non-uniqueness of the solution to the initial value problem is evident from the
acceleration

xA"
Lf

Lx
x@"

x#ax3

J(1!x2)#1
2
a(1!x4)

x@ (5)

that becomes ambiguous at t"0.
Another product equation of interest, this time with a non-algebraic non-linearity, is that

of the mathematical pendulum and constant velocity that combine into

x@(xA#u2 sinx)"0, u'0, x(0)"a, x@(0)"0. (6)

Integration with respect to time readily leads to the energy equation

1
2
x@2!u2 cosx"!u2 cos a, x(0)"a, x@(0)"0, (7)

which is "rst order, non-linear and singular at x"0.

3. NUMERICAL SOLUTION

Attempting to numerically solve the energy balance equation (3) by the explicit Euler
method x

1
"x

0
#qx@

0
, x"x

0
, where x

1
"x (q), approximately, and x

0
"x(0), we get

x
1
"1 and consequently x

n
"x (nq)"1 which is only the rest solution of equation (2). The

explicit method misses the periodic solution.
Use of the higher order Euler predictor x

1
"x

0
#qx@

0
#1

2
q2xA

0
is impossible here

because of the ambiguity of xA
0
"xA(0).

The explicit Euler scheme x@"(x
1
!x

0
)/q, x"x

1
, recasts equation (3) into the algebraic

form

(x
1
!1)2/q2#x2

1
#1

2
ax4

1
"1#1

2
a (8)

or

(x
1
!1)2#q2(x2

1
!1)#1

2
q2a(x4

1
!1)"0 (9)

that is seen to contain the factor x
1
!1 and hence the solution x (t)"1 for the state of rest.

Factoring out x
1
!1 from equation (1) leaves us with

x
1
(1#q2)!1#q2#1

2
aq2(x

1
#1)(x2

1
#1)"0 (10)

which is third order in x
1
.

In case a"0, equation (10) is readily solved in closed form to produce

x
1
"

1!q2
1#q2

"1!2q2#2 (11)
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as compared with the exact

x
1
"x(q)"cos q"1!1

2
q2#2 (12)

indicating that the one-step error in the approximate Euler solution is O(q2).
Once the periodic branch is discovered by the implicit corrector, solution of the initial

value problem may proceed by explicit means. Only one leap of the implicit method is
needed to step out of the bifurcation point on any branch that grows out of it, mitigating the
di$culties associated with the use of such schemes.

One may be tempted to use the higher order corrector x@"(x
1
!x

0
)/q, x"(x

1
#x

0
)/2 in

equation (3) for a possibly greater accuracy for x
1
"x

1
(q). Doing that we get, assuming

a"0 for the sake of expository simplicity, the algebraic equation

(x
1
!1)2#1

4
q2 (x

1
#1)2"q2 (13)

that still includes the factor x
1
!1, or the solution x (t)"1. Factoring out x

1
reduces

equation (13) to the linear

x
1
(1#1

4
q2)!1#3

4
q2"0 (14)

and another solution emerges from it,

x
1
"

1!3
4
q2

1#1
4
q2
"1!q2#2, (15)

with an approximation error that is still only O(q2) because of the singularity at t"0.
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